Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling
نویسندگان
چکیده
Lateral surface/subsurface flow and their connectivity play a significant role in redistributing soil water, which has a direct effect on biological, chemical, and geomorphological processes in the root zone (~1m). However, most of the land surface models neglect the horizontal exchanges of water at the grid or subgrid scales, focusing only on the vertical exchanges of water as one-dimensional process. To develop better hydrologic understanding and modeling capability in complex landscapes, in this study we added connectivity-based lateral subsurface flow algorithms in the Community Land Model. To demonstrate the impact of lateral flow and connectivity on soil water storage we designed three cases including the following: (1) with complex surface topography only, (2) with complex surface topography in upper soil layers and soil hydraulic properties with uniform anisotropy. and (3) with complex surface topography and soil hydraulic properties with spatially varying anisotropy. The connectivity was considered as an indicator for the variation of anisotropy in the case 3, which was created by wetness conditions or geophysical controls (e.g., soil type, normalized difference vegetation index, and topographic index). These cases were tested in two study sites (ER 5 field and ER-sub watershed in Oklahoma) comparing to the field (gravimetric and remote sensing) soil moisture observations. Through the analysis of spatial patterns and temporal dynamics of soil moisture predictions from the study cases, surface topography was found to be a crucial control in demonstrating the variation of near surface soil moisture, but not significantly affected the subsurface flow in deeper soil layers. In addition, we observed the best performance in case 3 representing that the lateral connectivity can contribute effectively to quantify the anisotropy and redistributing soil water in the root zone. Hence, the approach with connectivity-based lateral subsurface flow was able to better characterize the spatially distributed patterns of subsurface flow and improve the simulation of the hydrologic cycle.
منابع مشابه
Response of lateral placement depths of subsurface drip irrigation on okra (Abelmoschus esculentus)
Subsurface drip irrigation is defined as application of water below the soil surface through emitters, with discharge rates generally in the same range as surface drip irrigation. It has many advantages over surface drip. To see the response of subsurface drip irrigation on okra yield, a study was conducted at Indian Agricultural Research Institute, New Delhi, India during 2003 and 2004. Okra (...
متن کاملGeological controlling soil organic carbon and nitrogen density in a hillslope landscape, semiarid area of Golestan province, Iran
The effects of geological conditionwere assessed on density of Soil Organic Carbon (SOC) and Nitrogen (N)in a sequence of hillslope landscape, derived from different lithology i.e. loess deposit, reworked loess, marl with mixed siltstone and shale, reddish brown clay deposits and older loess in the semiarid area of northern Iran. However, other factors can influence SOC and N density such as la...
متن کاملField data and flow system response in clay (vertisol) shale terrain, north central Texas, USA
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the stud...
متن کاملSite selection of water storage based on multi-criteria decision analysis
Water loss can be minimized and conserve through constructing small storage dams for various irrigation purposes to support local livelihood. Geographic information system provides powerful techniques for many hydrological modeling and suitable dam site selection. The current study explored potential sites for small storage dams to meet agricultural requirements in district Malakand, Khyber Puk...
متن کاملModeling of Overland Flow Contamination Due to Heavy Metals in Shallow Soil Horizons
Heavy metals in southeast Kansas are frequently found in the shallow soil layers. Rainfall events in this region often generate overland flows which cause the release and migration of these chemicals into surface waters. The chemicals are then transported in surface waters to downstream locations and, as such, pose a threat to the quality of both fields along streams and surface and ground wate...
متن کامل